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ABSTRACT: Since the dawn of scanning probe microscopy (SPM), tapping or
intermittent contact mode has been one of the most widely used imaging modes.
Manual optimization of tapping mode not only takes a lot of instrument and operator
time but also often leads to frequent probe and sample damage, poor image quality,
and reproducibility issues for new types of samples or inexperienced users. Despite
wide use, optimization of tapping mode imaging is an extremely difficult problem,
being ill-suited to both classical control methods and machine learning techniques.
Here, we describe a reward-driven workflow to automate the optimization of the SPM
in tapping mode. The reward function is defined based on multiple channels with
physical and empirical knowledge of good scans encoded, representing a sample-
agnostic measure of image quality and imitating the decision-making logic employed
by human operators. The workflow determines scanning parameters that produce
consistent, high-quality images in attractive modes across various probes and samples.
These results demonstrate improved efficiency and reliability in tapping mode SPM operation.
KEYWORDS: SPM, tapping mode, reward-driven, automated experiment, active learning, Bayesian optimization, intelligent automation

Scanning probe microscopy (SPM) has revolutionized
our understanding of the nanoworld, providing un-
precedented insights into the structures and properties

of materials at the nanoscale. This powerful technique allows
for structural imaging in diverse environments, including
ambient conditions, liquids, and vacuum, making it versatile for
various applications.1−3 Over the years, SPM has evolved
significantly, building upon the initial contact and noncontact
modes4,5 to yield a broad array of advanced imaging modes.
These advancements have been driven by continuous
improvements in hardware and electronics, culminating in
the ability to achieve atomic resolution imaging even in
ambient conditions.6

Topographic imaging in SPM not only reveals the surface
morphology but also provides additional information through
various signal channels. For instance, in the basic tapping mode
(TM) with periodic drive, phase signals can be obtained and
offer insights into material properties and interactions.7,8

Moreover, SPM’s versatility is further enhanced by the
introduction of multi-frequency modes, as demonstrated in
refs 9 and 10. These modes enable the simultaneous
acquisition of multiple data channels, enriching our under-
standing of the sample’s properties.

The range of functional imaging modes available in SPM is
broad and encompasses various physical properties, such as
magnetic,5,11,12 mechanical,4,5 biological,3,13−15 ferroelectric,16

and electrical characteristics.5,17 Each of these modes allows
researchers to probe different aspects of the sample, providing
a comprehensive view of its functional behavior. However, the
effectiveness and reliability of these functional imaging modes
are critically dependent on the quality of topographic imaging.
Operators must simultaneously achieve multiple objectives,
including optimizing image stability, enhancing resolution, and
minimizing both reversible and irreversible changes in the
probe and sample states, while exploring material behaviors of
interest. Achieving these goals is a complex and time-
consuming process that requires significant expertise. The
success of SPM imaging heavily depends on the operator’s skill
and experience, often leading to irreproducible results when
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different operators or probes are involved. For example, when
imaging hard samples like crystals and ceramics,3,18−20 a set of
inappropriate scanning parameters can lead to fast probe
degradation and poor image quality. On soft samples such as
soft matters and liquid samples,2,14,15,21−23 nonoptimal
scanning parameters lead to irreversible sample damage and
poor image quality. This challenge is particularly pronounced
when dealing with soft systems, nanoparticles (NPs),
molecules, high-resolution imaging, and imaging in liquids.
Transitioning from robust calibration on hard samples to more
delicate and complex systems requires meticulous optimiza-
tion.
The foundational imaging modality in SPM is the tapping

mode,24,25 also known as intermittent contact (AC) or
amplitude-modulated (AM) mode. This imaging mode
accounts for most imaging studies in ambient or liquid and
also serves as the foundation for more complex techniques
such as Kelvin probe force microscopy (KPFM), magnetic
force microscopy (MFM), electrostatic force microscopy
(EFM), and force−distance curve mapping. In tapping
mode, the cantilever is driven at or near its lowest resonance
frequency. The amplitude and phase of its oscillations are
detected by using a lock-in amplifier. As the tip approaches the
surface, the tip-surface interactions dampen the cantilever’s
amplitude, which can then be used as a feedback signal for
topographic imaging. A key advantage of tapping mode is its
ability to significantly reduce tip and surface damage, making it
suitable for imaging much softer samples compared with
contact mode.
Optimizing the scanning parameters in tapping mode is

traditionally difficult and strongly sample-dependent, requiring
extensive human input and learning. Supervised machine
learning (ML) would require training on different sample
surfaces at different scales, different types of probes, and
different conditions of probes, which is nearly impossible given
the workload and computational cost.26 This problem is
equally complex for classical control methods, as it is not clear
how the cantilever dynamics translate to image quality. Each
sample’s unique topography, mechanical properties, and
environmental interactions contribute to a complex, high-
dimensional object space. Combined with the multiple control
parameters available in modern instruments, the imaging
process defies straightforward modeling or control. Traditional
approaches struggle with this variability, often resulting in
suboptimal imaging conditions that can lead to poor
resolution, increased noise, or even damage to the sample
and the probe.27,28

At the same time, we note that human operators learn to
optimize the scanning conditions and this knowledge is
transferable between different materials and instruments.
Skilled operators can intuitively adjust parameters based on
their knowledge and experience, achieving high-quality
imaging through iterative experimentation and fine-tuning.
Hence, we seek to develop an approach that allows the transfer
of human operator decision-making principles to machine
learning workflows. We propose that human expertise can be
represented as a reward function that distills the combination
of human heuristics and physical knowledge. By incorporating
human expertise via a reward-driven machine learning
framework, we automate the optimization process, ensuring
consistent, high-quality imaging across diverse samples and
conditions while reducing the dependency on operator
expertise and minimizing the risk of errors.

In this work, we demonstrate that reward-driven, rather than
data-driven, machine learning methods can effectively
automate the optimization of SPM imaging for various
samples, probes, and microscopes in a traceable manner with
minimal requirement of computation power (e.g., local central
processing unit (CPU)) that can be fulfilled on a local
computer without use of graphic processing unit (GPU),
which makes it widely accessible. The key innovation in our
approach is the introduction of a reward function that
transforms the ill-defined instrument problem into a classical
optimization task. Essentially, the reward function emulates
human expertise, guiding the machine learning algorithm to
optimize imaging parameters and consistently achieve the best
possible image quality. By leveraging machine learning, we aim
to standardize and streamline the optimization process,
reducing the dependency on operator expertise and improving
the reproducibility of SPM imaging. We also pose that the
community-wide development of the reward functions offers
an approach for democratization and introduction of FAIR
principles into automated experiments.

RESULTS AND DISCUSSION
Reward Function-Based Optimization. The key aspect

of any microscopy experiment is the optimization of image
conditions, which typically represents a considerable fraction of
the instrument time and effort of the human operator. During
this process, the operator tunes the parameters while
simultaneously assessing the quality of the data that streams
from the instrument. This tuning of imaging conditions in any
microscopy mode can be generally represented as an
optimization problem within the parameter space of the
instrument controls, which are typically well-known and
provided by the manufacturer. However, defining image
quality presents a complex problem. For atomically resolved
imaging in electron microscopy29 or scanning tunneling
microscopy,30 the shape of atomic columns or the presence
and intensity of lattice peaks in Fourier transforms offer natural
optimization targets.31 With the optimization target and
parameter space defined, this becomes a classical optimization
problem.
In nonatomically resolved imaging, unambiguous measures

of image resolution or quality are absent. Furthermore, these
cannot be defined using classical machine learning approaches
since each topographic image is different and hence suffer from
out-of-distribution problems, where trained supervised ma-
chine learning models perform badly on samples they have not
been trained on before. While supervised ML workflows can be
built for mature fields such as semiconductors or other
manufacturing, this paradigm is limited for open-ended
research problems. Additionally, descriptive-statistics-based
measures tend not to be robust with respect to noise and
scan instabilities. Previous attempts at automatically tuning
SPM have focused on adjusting the proportional-integral (PI)
feedback parameters by defining reward functions based on the
alignment of the trace and retrace of the height channel.26,32

However, these approaches usually result in scanning
parameters that lead to rapid probe and sample degradation.
Therefore, the key challenge in automating the optimization

of tapping mode (TM) is to find a reward function that works
universally across different probes, materials, topologies, and
operational environments. Here we design such a reward
function based on trace and retrace scan lines that incorporates
both physics-based knowledge and empirical insights, as
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illustrated in Figure 1. Compared to reward functions defined
based on entire images, those based on scan lines are
approximately 100 times faster, depending on the number of
pixels in the scan. This significant speed advantage makes the
optimization process practical for real-time operation. By
focusing on the critical features of scan lines, such as the
alignment and consistency between trace and retrace lines, we
aim to develop a robust and efficient optimization framework
that can consistently yield high-quality imaging across a wide
range of conditions.

Imaging Regimes for TM AFM. Depending on probe
types, samples, and setup parameters, SPM can operate in
either attractive or repulsive mode.8 In the attractive mode, the
microscope tip operates predominantly under long-range
attractive forces, such as van der Waals (vdW) interactions,
without physical contact. This allows high-resolution imaging
while minimizing the deformation and damage of probes and
samples. Conditions that favor attractive mode include small
amplitudes, larger and less sharp tips, and slower but more
sensitive and higher quality factors. Probes often transition
from repulsive to mixed to attractive mode as they wear, and
the balance of vdW and adhesive forces changes. This mode
excels in achieving high resolution, preserving the integrity of
delicate materials like biomolecules,33 and is ideal for imaging
soft or loosely bound materials. However, it requires precise
control of the tip-sample distance, necessitating meticulous
calibration and stability. In the operation of SPM, the attractive
mode is usually characterized by phases above the free-air
phase, which is the measured phase when the probe is very far
away from the sample surface.

In contrast, large amplitudes, sharp tips, and lower quality
factors favor a net-repulsive interaction, where strong, short-
range repulsive forces dominate. In repulsive mode, the tip
intermittently contacts the sample surface, resulting in
predominantly short-range repulsive forces, including mechan-
ical contact and repulsive vdW forces.8 This mode provides
enhanced sensitivity for measuring mechanical properties, such
as stiffness and viscoelasticity, and offers better contrast,
making it easier to distinguish different materials or features.
However, physical contact can lead to sample and probe
deformation or damage, reducing image resolution and
potentially causing irreversible changes to the probe and
sample. While the repulsive mode is advantageous for
mechanical property measurements, it comes with the trade-
off of potential sample alteration and reduced resolution. SPM
is operated in repulsive mode when the measured phases are
below the free-air phase.
Because of the tip-shape dependence discussed above, if a

probe is initially imaging in repulsive mode, it will often
transition from repulsive to mixed to attractive mode as they
wear and the balance of vdW and adhesive forces changes. The
transition between attractive and repulsive modes can result in
high transitory forces34 and is indicated by phases jumping
across the free-air phase.
In this work, we focus on optimizing tip wear while still

obtaining a high spatial resolution. This requires a stable and
robust approach to parameter tuning that can adapt to the
varying conditions of the different samples and imaging modes.
Our goal is to develop a method that ensures consistent, high-
quality imaging across diverse applications, minimizing the
trade-offs between resolution, sensitivity, and sample integrity.

Figure 1. Workflow of optimizing an autonomous microscope. In the autonomous microscope presented here, we define a reward function to
quantify the scan quality. During the Bayesian optimization (BO) process, a Gaussian process (GP) model of the reward function is fitted for
the explored parameters. This GP model is used to predict the distribution and uncertainty of the reward function over the whole parameter
space, from which the next set of parameters will be determined. This iteration process is repeated until the maximum number of
optimization steps is reached or the image quality is satisfactory. Thus, the machine learning algorithm replaces human operation.
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By leveraging a reward-driven machine learning framework, we
aim to emulate the adaptive expertise of human operators,
providing a scalable solution to the complex optimization
problem in SPM imaging. This approach promises to enhance
the efficiency, reliability, and autonomy of SPM, making it
more accessible and effective for a wide range of scientific and
industrial applications.

Define the Parameter Space and Reward Function.
Below we discuss the relationship between different SPM
modes, scan quality, the safety of the sample and probe, and
the tip-sample distance. In SPM, the tip-sample distance is
controlled by the ratio between the set point amplitude
(Aset point) and free-air amplitude (Adrive, also known as free
amplitude) so the discussion of the physical mechanisms will
be guided by the ratio of set point amplitude and free-air
amplitude.
When the tip is far away from the sample surface (large

Aset point/Adrive), there are no forces between the tip and sample.
Consequently, the probe is oscillating far above the sample
surface instead of following the surface profile, leading to
phases close to the free-air phase and random height traces, as

shown in Figure 2c, subjected to either small drift or other
noise in the signal.
As the tip gets closer to the sample surface (smaller Aset point/

Adrive), SPM works in the attractive mode, and there are
typically long-range attractive forces arising between the tip
and surface. This attractive force will decrease the amplitude of
the cantilever to the set point amplitude at a fixed tip-sample
distance, as shown in Figure 2d. As a result, the trace and
retrace lines follow closely the sample surface profile with
reasonably high spatial resolution, and the phases are above the
free-air phase. In addition, the force between the tip and
sample is kept at a small, net-attractive value, and that helps
minimize tip and sample damage. This mode is the goal of this
work.
When the tip gets even closer to the sample surface (smaller

Aset point/Adrive), SPM jumps between attractive mode and
repulsive mode, as the interaction between the tip and sample
jumps between the long-range attractive forces and short-range
repulsive forces. Consequently, there are sudden jumps in the
phase traces across the free-air phase in this crossover mode, as
shown in Figure 2b. A previous study showed that the

Figure 2. Define reward function to quantify the image quality. (a) Topography map of TiO2 nanoparticles shows the effect of scanning
parameters on the image quality. In the scan, the free-air amplitude is kept at 10.26 nm, the proportional P gain is kept at 0, the integral I
gain is kept at 30, and the set point amplitude is changed in the middle of the scan. (b) Schematic plot of the dependence of phase on the set
point at a fixed free-air amplitude. (c) Scan trace and retrace lines for a large set point. When the set point is large, the probe is far away from
the sample surface and thus dominated by the long-range probe−sample interactions. Consequently, the probe follows the profile of this
long-range interaction instead of following the sample surface profile closely. (d) Trace and retrace lines in the attractive mode. In this
mode, the system is dominated by net-attractive interactions between the probe and the sample, which gives high spatial resolution, phase
values above 90°, and small dissipation that minimizes probe and sample damage. In this study, we are optimizing this imaging mode. (e)
Trace and retrace lines in the attractive-repulsive crossover mode. As the set point is lowered, the system alternates between attractive and
repulsive modes. This is indicated by the phase traces jumping above and below the 90° line and the presence of probe and sample damage.
(f) Trace and retrace lines in the repulsive mode. When the set point is small, the probes are in the fully repulsive mode. In this mode, there
is a high risk of probe and sample damage.
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transition between attractive and repulsive mode can result in
very high transitory forces between the tip and the sample.34

As a result, the trace and retrace lines match poorly due to the
high transitory forces when the phase jumps occur in Figure
2e.
When Aset point/Adrive is further decreased, the interaction

between the tip and sample is more likely to be completely
dominated by short-range repulsive forces. In this mode, the
phases are below the free-air phase most of time. The spatial
resolution is suppressed, and the tip wears off quickly due to
the large forces between the tip and sample, as shown in Figure
2f.
Based on these physical considerations, we suggest the

reward function based on four components derived from the
trace and retrace scan lines of the height and phase channels.
The height alignment term quantifies the agreement between
the trace and retrace lines in the height channel. The phase
term measures whether the probe is operating in the attractive
mode by detecting the presence of phase angles below the free-
air phase. The distance term favors lower probe heights to
make sure that the probe is as close to the sample surface as
possible. Finally, the contrast term tries to maximize the
amount of information acquired by favoring a large contrast in
the height channels. Assembling all these components
together, we define the reward function based on a pair of
trace and retrace lines of height and phase channels as shown
in the following equation:
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(1)

where htrace and hretrace are the trace and retrace height scan
lines with linear fitted background removed, Nθ<θdfree

and Nθ>θdfree

are the total number of pixels in the phase scan lines smaller
(repulsive mode) and greater (attractive mode) than the free-
phase angles, hmax and hmin are the highest and lowest probe
position of current trace and retrace height lines, respectively,
hglobal min is the global lowest probe position computed based
on all the acquired scan lines, σtraces is the standard deviation of
the height lines to represent the contrast and this term is
introduced to punish when the traces are featureless as shown
in Figure 2c, which usually happens when the probe is far away
from the surface and dominated by long-range interactions.
For samples with a flat surface, this term consistently gives bad
reward values, but the other terms in the reward can still lead
to an optimal solution.
To compute the absolute height difference |htrace − hretrace|

term, second-order polynomial backgrounds are first removed
for htrace and hretrace. Then a shift match is performed to remove
any latency shift between them. Basically, hretrace is interpolated
and shifted with respect to htrace and the absolute difference is
minimized to find the optimal subpixel shift. The numeric
values of each term are multiplied by a factor of 100 to
represent a unitless percentage. Finally, for all the terms inside
log operator, the values are capped minimally at logarithmic
constant e to prevent the log terms generating negative values.

By normalizing the terms inside log operators with either the
largest height difference or the height traces at each pixel, we
minimize the effect of height variation across the whole scan
area. To remove the latency between the neighboring trace and
retrace that is usually induced by phase lag inside the
instrument controller, we performed a shift match before
computing the rewards. We shifted the retrace with respect to
the trace and found the optimal shift value by minimizing the
absolute difference between the two traces. Please see the
attached example Jupyter notebook for details.
When the probe is far away from the sample surface and

only very weakly interacts with the sample, the traces will be
dominated by cantilever sensor noise. Sensor noise will
generally have little or no correlation between trace and
retrace. The resulting height traces agree poorly with each
other and the distance between the probe and sample is large
as shown in Figure 2c. Therefore, both the height alignment
term and the distance term give bad reward values to signal a
bad scan. In the attractive mode, every component in our
reward function gives good rewards as the height traces align
well, the phases are consistently above the free-air phase, the
probe is close to the sample surface, and there is a reasonable
amount of contrast, as shown in Figure 2d. In the crossover
mode as shown in Figure 2e, the phases below the free-air
phase lead to a bad reward in the phase term. In the repulsive
mode, as shown in Figure 2f, most of the pixels in the scan
lines show phases below the free-air phase, giving a very small
reward to prevent the SPM from working in this mode.
Overall, the reward function is designed to distinguish

between a set of good topography scanning parameters in the
attractive mode and bad parameters in other modes. In
addition, it also leaves the flexibility to adjust the weight of
different components to fine-tune for different applications.

Benchmark the Performance of the Reward Function
with a Simulator. In real active learning autonomous
experiments, the full picture or the ground truth is usually
inaccessible, which imposes difficulty in benchmarking the
performance of autonomous experiments. For example, in the
automated optimization of SPM in the tapping mode, we have
access to only the rewards computed from all the acquired
scanning traces, which are limited to a small fraction of the
entire parameter space. At the same time, we do not have
access to the “true” surface topography. Hence, defining the
benchmarking approaches similarly to how it is done in the
classical ML community on human-labeled data sets is
impossible.
To resolve this problem, we designed an open-source SPM

scanning simulator, SpmSimu, to benchmark the performance
of our reward-based automated optimization workflow. It
simulates the trace and retrace scanning maps of height and
phase channels based on ground-truth height patterns, tip-
shaped kernels, and scanning parameters provided by users.
The ground-truth patterns can be either artificially generated
height profiles or real topographic profiles acquired exper-
imentally. This simulator is designed to capture the realistic
effect of different tip conditions including tip radius and
multiple tips, scanning parameters including drive amplitude,
set point, proportional (P) gain, integral (I) gain, PI buffer size,
z-piezoelectric speed, and scanning speed (xy-piezoelectric
speed). In addition, it is capable of generating a realistic phase
response according to the simulated real-time tip-sample
distance and the applied drive amplitude.
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To verify that the simulator captures the characteristics of
real SPM scanning in the tapping mode, simulations with
different drive amplitudes and set points were performed. As
shown in Figure 3a, the parameter space is divided into three
regions. In region I, the Aset point/Adrive is too small, and the
probe is working in the repulsive mode. As a result, the reward
is very small signaling a bad scan quality. In region II, the
Aset point/Adrive is ideal, and the probe is operating in the fully
attractive mode. The simulated phase map in Figure 3c
resembles the behavior of probes in a real experiment, as
shown in Figure 2d. In region III, the Aset point/Adrive is so large
that even the random instrument noise can trigger the set

point, which leads to totally random scanning traces shown in
Figure 3d,e. This behavior corresponds to the “not on surface”
case in the real experiment shown in Figure 2. Besides,
crossover between attractive and repulsive modes in Figure 2e
is reproduced by our simulator running with scanning
parameters in-between regions I and II, as shown in Figure
3f. The implementation of the SPM scanning simulator and its
simulation of double-tip and other commonly observed
experimental artifacts can be found in the Supporting
Information and Figure S1.
To benchmark our proposed reward function, a dense full-

grid search in the parameter space was first performed. For

Figure 3. Benchmark reward functions with a SPM scan simulator. (a) Ground-truth reward function simulated on a dense grid of drive
amplitudes and set points. Two dashed yellow curves divide the map into three parts. Region I: the set point/drive is too small and probe is
working in the repulsive mode; region II: the probe is operating in the attractive mode as the set point/drive is large enough; region III: the
set point/drive is so large that the scan is dominated by random noise. (b) Ground-truth height map used in this simulation. This map is
acquired on a water droplet sample experimentally. (c) Simulated phase map based on (b) with an ideal set of scanning parameters in region
II. Simulated (d) height and (e) phase maps with scanning parameters in region III. The set point/drive is so large that the scan is
completely dominated by noise. (f) Simulated phase map with scanning conditions between regions I and II. The transition between
attractive and repulsive modes induces large phase jumps in the areas with large slopes in the height map. (g) Comparison of learning loss
between acquisition functions of upper confidence bound (UCB) and expected improvement (EI). At each step, the loss is computed as the
absolute difference between the rewards predicted by the learned BO model and the ground-truth rewards measured on a dense grid as
shown in (a). The UCB and EI simulations both start with the same set of five random initial seeding points. (h) Optimization error is
computed as the Euclidean distance between the predicted optimal scanning parameters at each training step and the true optimal
parameters given by the grid search in (a).
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easy visualization of the results, we have selected the drive
amplitude and set point as our parameters to optimize. The
simulation was simulated based on the water droplet
topography profile acquired experimentally with an ideal tip,
as shown in Figure S1a, and all the other parameters were set
to their empirically chosen optimal values. In the grid search,
trace and retrace scan maps of height and phase channels were
simulated with the given drive amplitude and set point, from
which the reward was computed based on the full-maps of
height and phase using eq 1. The ending result is a map of
rewards in the 2D parameter space, as shown in Figure 3a.
Two simulations of automated optimization of scanning

parameter experiments were performed based on the simulator.
In the simulation with the acquisition function of UCB, 5
random initial seeding points were selected from the 2D
parameter space, and their corresponding reward values were
computed based on the height and phase maps simulated with
these selected seeding parameters. The training process
consisted of iterative steps, which started with fitting a
Gaussian process (GP) model based on all acquired reward
values. Then the UCB acquisition function is computed based
on the prediction and uncertainty of the GP model, from
which the next pair of parameters to try is determined. The EI
simulation starts with the same 5 initial seeding parameters,
but it uses the acquisition function of EI to determine the next
parameters to try. Both simulations consist of 5 initial seeding
points and 100 training steps. In the UCB simulation, the

acquisition function parameters are chosen to favor the
tendency of exploration over exploitation.
The loss function at each step is computed by summing the

absolute difference between the reward distribution predicted
by the GP model and the ground truth from the grid search of
the rewards, which measures the accuracy of the GP model in
describing the full picture of the reward distribution over the
entire parameter space. As shown in Figure 3g, the acquisition
of UCB has a better performance in terms of getting a more
accurate full-picture description of the reward distribution,
which agrees with the chosen exploration policy for the UCB
simulation.
To compute the optimization error, we first find the ground-

truth best scanning parameters by finding the scanning
parameters corresponding to the maximum reward in the
grid search shown in Figure 3a. At each training step, the
optimization error is computed as the Euclidean distance
between the optimal parameters predicted by the GP model
and the ground-truth best parameters. Therefore, the
optimization error describes how closely each model can
predict the best scanning parameters. As shown in Figure 3h,
the acquisition of EI has a better performance than the UCB. It
has a closer initial guess, a faster decay, and smaller ending
steps. The videos of the training process can be found in the
attached media files.
This SPM scanning simulator can accurately capture the

different scanning modes observed in real experiments and

Figure 4. Optimization for more challenging materials: water droplet. (a) Initial seeding of 10 points and their reward values. (b) Predicted
distribution of the reward function in the full parameter space after 30 BO exploration steps. (c) Acquisition mask for guiding the
optimization process with human empirical knowledge. By multiplying the EI acquisition function with this acquisition mask, the parameters
with lower free-air amplitude and larger set point are preferred for the next iteration. (d) Bayesian optimization trajectory of the seeding and
exploration (see Figure S1 for the detailed optimization data associated with the BO trajectory). The optimized scanning parameters are
marked by a red cross. (e) Topography map of a water droplet (with CaCl2 salt-saturated solvents) taken with the optimized scanning
parameters in (d). (f) Phase map taken together with e shows that the full image is taken in the attractive mode.
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describe the effects of different scanning conditions. We note
that while the SPM model here is basic, it is unknown for the
optimization algorithm. Therefore, we anticipate that this
algorithm, even when trained without explicit knowledge of the
system dynamics, will generalize well to realistic SPM
environments. It provides a cheap but effective way to simulate
realistic scan images at different tip and scanning conditions,
which can be used for user training, development of instrument
automation, and microscopy-related machine learning applica-
tions. The benchmarking results show that our proposed
reward function can capture the characteristics of good scans
over bad scans and that the BO automated optimization
workflow can quickly discover the optimal scanning parame-
ters.

Reward-Driven Optimization and Results. We em-
ployed Bayesian optimization (BO) to optimize the scanning
parameters, focusing on two key parameters: free-air amplitude
and set point, under consistent conditions. In addition to the
physical knowledge about SPM that we encoded into the
reward function, we found it necessary to guide the
optimization process with human empirical knowledge,
especially in defining the parameter space.
To set up a high-resolution scan in attractive mode, human

operators usually start with a small driving voltage and a large
set point that ensures gentle force between the probe and
sample. The smallest free amplitude can be estimated by the
roughness of the sample at the given scan size. Then the set
point is decreased from a large starting value until the trace and
retrace lines agree with each other and thus follow the
corrugation of the sample surface. Once the free-air amplitude
and set point are determined, human operators can also
increase the integral gain (I gain) as high as possible without
the PI loop becoming unstable and oscillatory.
Initially, we defined the parameter space based on the type

of probe and the estimated roughness of the sample in the
given scan size. For instance, with the Tap300G probe and
TiO2 nanoparticles, the free-air amplitude was constrained
between 0.15 and 5.9 nm, and the set point ranged between 10
and 90% of the free-air amplitude. The optimization process
and results for TiO2 nanoparticles are shown in Figure S2.
After verifying the functionality of our reward-driven

optimization workflow on the TiO2 nanoparticles, we switched
to a water droplet sample to challenge our reward-driven
workflow. The water droplet on a mica substrate serves as an
excellent testing sample for our automated optimization
workflow. First, the image quality of water droplets is highly
sensitive to the tip-sample distance. If the tip-sample distance
is too large, then the probe cannot accurately follow the height
profile of droplets. Conversely, if the tip-sample distance is too
small, a liquid bridge forms between the tip and droplet,
resulting in distortions in the image. More importantly, tuning
the scanning parameters for water droplets is challenging even
for experienced SPM operators, as the optimal set point
amplitude and free-air amplitude are confined to a narrow
region in the parameter space.
Once the parameter space was established, we randomly

sampled 10 points within this space to serve as the initial
seeding points. The microscope was then controlled via a code
to measure the scan lines at these parameters, from which the
reward function could be computed, as illustrated in Figure 4a.
Using the reward values from these seeding points, we fitted an
initial Gaussian process (GP) model. This model predicted the
distribution and uncertainty of the reward function across the

entire parameter space. Subsequently, the acquisition of
expected improvement (EI) was computed based on these
predictions and uncertainties as shown in Figure 4b,c,
determining the next set of parameters to be measured by
maximizing the EI acquisition function. To account for human
empirical knowledge of starting the optimization with small
free-air amplitude and large set point, we masked the
acquisition function in the parameter space to enhance the
preference for the parameters with smaller free-air amplitude
and larger set point, as shown in Figure 4c. The scanning
parameters were then updated to the new set without
interrupting the scan. The reward value for these new
parameters was calculated from the newly acquired trace and
retrace scan lines. The new parameter−reward pair was added
to the previously collected data to retrain and update the GP
model. This iterating process of measuring and fitting was
repeated until the maximum number of exploration steps was
reached, or the scan quality became satisfactory to the human
operator.
Despite these challenges, we were able to find the optimal

scanning parameters that give high-quality TM scans of water
droplets with our autonomous workflow, as shown in Figure
4e,f The sharp images of small droplets indicate a high spatial
resolution in the image. The smooth image of the large
droplets in the height map together with the phase map above
the free-phase reveals that the probe works in the net-attractive
mode across the whole image and closely follows the height
profile of the droplets without distortion.

CONCLUSIONS
We present a reward-driven workflow for automatic
optimization of SPM in tapping mode, significantly advancing
the efficiency, reproducibility, and accessibility of high-quality
SPM imaging. This method not only drastically reduces the
instrument time required to tune different probes on various
samples but also ensures the acquisition of high-quality and
highly reproducible SPM images. This automation increases
the level of application and accessibility of SPM by eliminating
the need for extensive manual tuning. Our study lays the
groundwork for automating more complex SPM tasks, such as
automating more advanced imaging modes and achieving
atomic resolution in ambient environments.
We point out that our unsupervised optimization workflow

operates by identifying the parameters that yield the highest
scan quality for a given probe and sample. To assess whether
the final scan meets the desired quality standards, either human
inspection of the scan images is required, or an automated
quality assessment method must be established. This assess-
ment can be based on the reward function used in
optimization, specific predefined features of the sample�
such as characteristic nanoparticle shapes or atomic resolution,
or supervised machine learning models when scanning on a
previously characterized sample. In addition, we have observed
failure of our workflow in two cases: first, when the probe gets
damaged during the optimization process, the GP will fail as
the kernel length will become so small that the unstable and
incorrect predictions will be given. Secondly, under some given
conditions of scan speed, scan size, and corrugation of the
sample, there does not exist a set of control parameters that
give high-quality scan safely. In this case, the automated
workflow will still give a compromised solution, but generally,
the final scan quality cannot meet human operators’ standards.
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This is the scenario where multiobjective optimization should
be used to control the trade-offs between different objectives.
A possible enhancement to the proposed workflow in the

future involves adapting to shifts in optimal parameters caused
by probe degradation or variations in the sample topography.
This adaptation requires real-time detection of parameter drift,
which can be indicated by a decline in scan quality, as assessed
by the reward function in this work or identified through
supervised machine learning algorithms when scanning on a
previously characterized sample. Subsequently, reoptimization
of the probe parameters must be performed using prior
optimization data and newly acquired scan lines, thereby
avoiding the need to repeat the entire optimization process.
This process would require the application of transfer learning
or similar machine learning techniques to efficiently transfer
knowledge from prior optimization to the updated parameter
space.
Moreover, the broader applicability of this reward-driven

optimization workflow across the microscopy community has
the potential to transform traditionally complex human-led
tasks into streamlined machine learning-based optimization
processes. This shift is crucial for further automation of
microscopy, addressing one of the last significant barriers to
fully automated microscopes.
Finally, we anticipate that our workflow will have a profound

impact on the open science in microscopy. While sharing
microscope data alone has provided limited benefits due to the
diversity of tasks and applications, the sharing of reward
functions introduces a new paradigm. This approach fosters a
more integrated and collaborative community, enhancing the
reproducibility and efficiency of microscopy research.
This comprehensive solution not only democratizes access

to high-quality SPM imaging but also propels the field toward a
future where automated, intelligent systems are the norm,
significantly advancing both research and industrial applica-
tions.

EXPERIMENTAL SECTION
Technical Settings. For the implementation in this paper, we

made it light enough to run on a local computer with a central process
unit (CPU) only. Optimization of scanning parameters in tapping
mode requires an interface library to directly control the SPM and the
availability of sufficiently high computational power to support the
optimization algorithms. Previously, we have developed a Python
interface library to control the automation of a Jupiter SPM system
manufactured by Oxford Instrument Asylum Research from a local
computer without GPU. Connection with HPC will allow more
complicated optimization scheme and we have solutions for that.35

This library not only enables operating the SPM system remotely with
code the same way as human operators but also has access to the
intermediate data like trace and retrace scan lines in all the channels.

Samples. The (CrVTaW)xMo1−x thin film was grown via dc
magnetron co-sputtering from a 50 mm diameter Mo and an
equiatomic CrVTaW target at 500 °C substrate temperature. The
system was pumped to ∼3 × 10−7 Torr and backfilled with Ar to 5
mTorr and the sputtering powers (200 W for CrVTaW and 100 W for
Mo) were adjusted to give approximately equivalent sputtering rates
(10 nm/min determined via X-ray reflectance) of the two targets at
the substrate center. The pseudo binary (CrVTaW)xMo1−x
composition varies from 15 < x < 88 atom % across the 100 mm
diameter substrate with a roughly linear composition gradient.

The PbTiO3 (PTO) thin films were grown on La0.7Sr0.3MnO3
(LSMO) buffered (110)-oriented SrTiO3 (STO) single crystal
substrates by using pulsed laser deposition (PLD) with a KrF excimer
laser (λ = 248 nm). The LSMO/PTO layers were deposited at

temperatures of 700/690 °C with oxygen pressures of 100/150
mTorr, respectively. After deposition, the samples were cooled to
room temperature under an oxygen pressure of 700 Torr. The
thicknesses of the PTO and LSMO layers are approximately 150 and
30 nm, respectively.

Pb0.995(Zr0.45Ti0.55)0.99Nb0.01O3 films were grown by pulsed laser
deposition using a KrF excimer laser from a ceramic target onto a
SrRuO3-electroded (001) SrTiO3 single crystal. The SrRuO3 film was
grown from a target from the Kojundo Chemical Lab. Co. Ltd., using
a laser energy density of 1.5 J/cm2, a substrate temperature of 660 °C,
an oxygen pressure of 120 mTorr, a target-to-substrate distance of 6.7
mm, and a frequency of 5 Hz. The SrRuO3 film thickness was about
50 nm. The PZT film was grown from a target with 20% excess PbO
to compensate for lead loss during growth, using a laser energy
density of 1.5 J/cm2, a substrate temperature of 630 °C, an oxygen
pressure of 120 mTorr, a target-to-substrate distance of 6.2 mm, and a
frequency of 5 Hz. The PZT film thickness was around 147 nm.

TiO2 NPs were synthesized via a modified solvothermal method.
Titanium tetraisopropoxide (TTIP, 99.95%, Sigma-Aldrich) served as
the titanium precursor, and anhydrous ethanol was utilized as the
solvent. In a standard synthesis, 0.1 M of TTIP was combined with 50
mL of ethanol and stirred uniformly for 1 h. Subsequently, a mixture
of 50 mL of ethanol and deionized water in a 1:1 ratio was added to
the solution, followed by vigorous stirring for another hour. To induce
rapid hydrolysis, a few drops of pH 4.0 H2SO4 were introduced. The
resulting white solution was then placed in a tightly sealed reagent
bottle and subjected to solvothermal growth at 90 °C for 12 h. The
final products were centrifuged and washed several times with
deionized water to eliminate any bound sulfate ions. The resulting
NPs were dried and annealed at varying temperatures (400 °C) for 1
h. These obtained NPs were characterized by X-ray diffraction and
scanning electron microscopy for their structure evaluation.

The Cs3Bi2I9 (CBI) microcrystals (MCs) were synthesized through
a solvent-free mechanochemical activation method, as detailed
elsewhere.36 In this procedure, the precursors cesium iodide (CsI;
Aldrich, 99.999% ultradry, metals basis) and bismuth iodide (BiI3;
Sigma-Aldrich, 98%), were ground for 15 min under ambient
conditions using a mortar-pestle. The resultant powder was then
washed three times with a mixture of dimethylformamide (DMF) and
dimethyl sulfoxide (DMSO) solution. Afterward chloroform (CHCl3)
was utilized as an antisolvent to obtain orange microcrystals. The
MCs were characterized by X-ray diffraction and scanning electron
microscopy for their structure evaluation.

The preparation of CaCl2-solution droplets on mica substrate
follows the recipe described in ref 22.

SPM Setup. All tapping mode SPM measurements were
performed on a Jupiter SPM system manufactured by Oxford
Instruments Asylum Research. The probes tested include ASYE-
LEC.01-R2 and AC 160TS-R3 from Asylum Research, Multi75G and
TAP300G from BudgetSensor, and the AD-2.8-AS diamond probe
from Adama Innovations.

Code Implementation. Botorch37 was utilized as the Bayesian
optimization framework, employing the expected improvement (EI)
acquisition function. The surrogate Gaussian process (GP) model was
incorporated using gpytorch.38 In the optimization of two scanning
parameters described in this paper, we sampled the reward function in
a parameter space of 100 × 100 pixels. All of the parameters are
normalized to be within (0, 1).

AESPM is an open-source SPM-Python interface library. It can be
found in the following link with detailed examples and tutorial
notebooks: https://github.com/RichardLiuCoding/aespm.

SpmSimu is an open-source SPM scanning simulator. It can be
found in the following link with detailed examples and tutorial
notebooks: https://github.com/RichardLiuCoding/spmsimu.

To make sure readers can reproduce the results shown in this work,
we have prepared an open-source Jupyter notebook in this link:
https://github.com/RichardLiuCoding/spmsimu/blob/main/
spmsimu/notebooks/TM_BO_Benchmarking_SpmSimu_v1.ipynb.
This notebook can be run either online in Colab or locally after
downloading. It contains all the codes to reproduce the benchmarking
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results in Figures 3 and S1. An example of a complete workflow of
automated optimization of drive amplitude and set point based on the
SpmSimu simulator is also provided. Another example shows the
optimization of three parameters.

With AESPM, SpmSimu, and example automated optimization
workflow notebook provided, readers should be able to reproduce our
results based on the simulator or modify the provided codes to make
the workflow work on their own instruments.
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